Go to content
Factorising quadratic expressions is the opposite of multiplying out the brackets. For example the expression (x+1)(x+3) can be multiplied out to give x^2+4x+3. Going the other way or reversing this process is called factorising.

## Summary/Background

The ability to factorise quadratic functions is essential to making sound progress in advanced mathematics. It is a skill. You get better with practise.

You can get a better display of the maths by downloading special TeX fonts from jsMath. In the meantime, we will do the best we can with the fonts you have, but it may not be pretty and some equations may not be rendered correctly.

## This question appears in the following syllabi:

SyllabusModuleSectionTopicExam Year
AP Calculus AB (USA)1Algebra and FunctionsQuadratic factorising-
AP Calculus BC (USA)1Algebra and FunctionsQuadratic factorising-
AQA A-Level (UK - Pre-2017)C1Algebra and FunctionsQuadratic factorising-
AQA AS Maths 2017Pure MathsAlgebraFactorising Quadratics-
AQA AS/A2 Maths 2017Pure MathsAlgebraFactorising Quadratics-
CCEA A-Level (NI)C1Algebra and FunctionsQuadratic factorising-
CIE A-Level (UK)P1Algebra and FunctionsQuadratic factorising-
Edexcel A-Level (UK - Pre-2017)C1Algebra and FunctionsQuadratic factorising-