The equation z^n=a+ib \quad has n roots. We can use De Moivre's theorem to find them.
De Moivre's Theorem: (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta
De Moivre's Theorem: (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta
Software/Applets used on this page
This question appears in the following syllabi:
Syllabus | Module | Section | Topic | Exam Year |
---|---|---|---|---|
AQA A-Level (UK - Pre-2017) | FP2 | Complex Numbers | De Moivre theorem | - |
AQA A2 Further Maths 2017 | Pure Maths | Further Complex Numbers | De Moivre Theorem | - |
AQA AS/A2 Further Maths 2017 | Pure Maths | Further Complex Numbers | De Moivre Theorem | - |
CCEA A-Level (NI) | FP2 | Complex Numbers | De Moivre theorem | - |
CIE A-Level (UK) | P3 | Complex Numbers | De Moivre theorem | - |
Edexcel A-Level (UK - Pre-2017) | FP2 | Complex Numbers | De Moivre theorem | - |
Edexcel A2 Further Maths 2017 | Core Pure Maths | Complex Numbers | De Moivre Theorem | - |
Edexcel AS/A2 Further Maths 2017 | Core Pure Maths | Complex Numbers | De Moivre Theorem | - |
I.B. Higher Level | 1 | Complex Numbers | De Moivre theorem | - |
Methods (UK) | M3 | Complex Numbers | De Moivre theorem | - |
OCR A-Level (UK - Pre-2017) | FP3 | Complex Numbers | De Moivre theorem | - |
OCR A2 Further Maths 2017 | Pure Core | Further Complex Numbers | De Moivre Theorem | - |
OCR MEI A2 Further Maths 2017 | Core Pure B | Complex Numbers | De Moivre Theorem | - |
OCR-MEI A-Level (UK - Pre-2017) | FP2 | Complex Numbers | De Moivre theorem | - |
Scottish Advanced Highers | M2 | Complex Numbers | De Moivre theorem | - |
Scottish (Highers + Advanced) | AM2 | Complex Numbers | De Moivre theorem | - |
Universal (all site questions) | C | Complex Numbers | De Moivre theorem | - |
WJEC A-Level (Wales) | FP2 | Complex Numbers | De Moivre theorem | - |