Go to content
The integration by parts method is used to integrate products and uses the following formula: \displaystyle \int u \frac{dv}{dx}dx = uv - \int v\frac{du}{dx} dx
Change
 Steps  
All
Change
 Steps  
All
O
O
O
O
    
+
r
-
    

Software/Applets used on this page

jsMath
This page uses jsMath
You can get a better display of the maths by downloading special TeX fonts from jsMath. In the meantime, we will do the best we can with the fonts you have, but it may not be pretty and some equations may not be rendered correctly.

This question appears in the following syllabi:

SyllabusModuleSectionTopicExam Year
AP Calculus BC (USA)4IntegrationParts-
AQA A-Level (UK - Pre-2017)C3IntegrationParts-
AQA A2 Maths 2017Pure MathsIntegrationIntegration by Parts-
AQA AS/A2 Maths 2017Pure MathsIntegrationIntegration by Parts-
CBSE XII (India)CalculusIntegralsIntegration by parts-
CCEA A-Level (NI)C4IntegrationParts-
CIE A-Level (UK)P3IntegrationParts-
Edexcel A-Level (UK - Pre-2017)C4IntegrationParts-
Edexcel A2 Maths 2017Pure MathsIntegrationIntegration by Parts-
Edexcel AS/A2 Maths 2017Pure MathsIntegrationIntegration by Parts-
I.B. Higher Level6IntegrationParts-
Methods (UK)M9IntegrationParts-
OCR A-Level (UK - Pre-2017)C4IntegrationParts-
OCR A2 Maths 2017Pure MathsIntegration TechniquesIntegration by Parts-
OCR MEI A2 Maths 2017Pure MathsIntegration TechniquesIntegration by Parts-
OCR-MEI A-Level (UK - Pre-2017)C3IntegrationParts-
Pre-U A-Level (UK)5IntegrationParts-
Scottish Advanced HighersM2IntegrationParts-
Scottish (Highers + Advanced)AM2IntegrationParts-
Universal (all site questions)IIntegrationParts-
WJEC A-Level (Wales)C4IntegrationParts-