Go to content
If y is given as a function of a parameter t, and x is given as a function of the same parameter t, then \displaystyle \frac{dy}{dx} can be found by using: \displaystyle \frac{dy}{dx} = \frac{\frac{dy}{dt} }{\frac{dx}{dt} } = \frac{dy}{dt} \times \frac{dt}{dx}

You can get a better display of the maths by downloading special TeX fonts from jsMath. In the meantime, we will do the best we can with the fonts you have, but it may not be pretty and some equations may not be rendered correctly.

## This question appears in the following syllabi:

SyllabusModuleSectionTopicExam Year
AP Calculus BC (USA)3DifferentiationParametric differentiation-
AQA A-Level (UK - Pre-2017)C4DifferentiationParametric differentiation-
AQA A2 Maths 2017Pure MathsParametric EquationsParametric Differentiation-
AQA AS/A2 Maths 2017Pure MathsParametric EquationsParametric Differentiation-
CBSE XII (India)CalculusContinuity and DifferentiabilityDerivatives of parametric functions-
CCEA A-Level (NI)C4DifferentiationParametric differentiation-
CIE A-Level (UK)P2DifferentiationParametric differentiation-
Edexcel A-Level (UK - Pre-2017)C4DifferentiationParametric differentiation-
Edexcel A2 Maths 2017Pure MathsDifferentiationParametric Differentiation-
Edexcel AS/A2 Maths 2017Pure MathsDifferentiationParametric Differentiation-
Methods (UK)M8DifferentiationParametric differentiation-
OCR A-Level (UK - Pre-2017)C4DifferentiationParametric differentiation-
OCR A2 Maths 2017Pure MathsDifferentiation TechniquesParametric Differentiation-
OCR MEI A2 Maths 2017Pure MathsParametric EquationsParametric Differentiation-
OCR-MEI A-Level (UK - Pre-2017)C4DifferentiationParametric differentiation-
Pre-U A-Level (UK)4DifferentiationParametric differentiation-